圆的周长教案

时间:2024-07-15 23:43:19
关于圆的周长教案模板汇编五篇

关于圆的周长教案模板汇编五篇

在教学工作者开展教学活动前,就有可能用到教案,借助教案可以更好地组织教学活动。那么优秀的教案是什么样的呢?下面是小编整理的圆的周长教案5篇,欢迎阅读,希望大家能够喜欢。

圆的周长教案 篇1

【教学目标】:

1、知道什么是圆的周长。通过绕一绕、滚一滚等活动找出圆的周长与直径的关系,理解圆周率的意义,合作推导出圆的周长计算公式。

2、能运用圆的周长的计算公式解决一些简单的数学问题。

3、初步体会转换思想,学到一些解决实际问题的数学方法。

【教学重点】: 通过自己动手找出圆的周长和直径之间的关系;探究圆的周长的计算公式,准确计算圆的周长。

【教学难点】:理解圆周率的意义

【教学难点】:教师:课件(U盘)、表格、卷尺。

学生:线或卷尺、计算器。

【教学过程】:

(1)教学准备:

1、根据“8里面有几个2,8就是2的几倍。8里面有4个2,

8就是2的4倍,要求8是2的几倍,用8÷2。”填空。

6是3的( )倍。 20是5的( )倍。

22是7的( )倍。

2、把倍数关系句改写成等式。

①6是3的2倍 ( )

②20是5的4倍。 ( )

③22是7的22/7 倍。( )

④C是d的a倍。( )

3、 数学是一门关系学

正方形的周长与边长的关系

C=4a

正方形的周长 是 边长的4倍

(2)新授过程。

自学课本第62页,思考

1、什么是圆的周长?

答:围成圆的曲线的长是圆的周长。

2、直观认识圆的周长。演示动画。

3、你认为 圆的周长与正方形的周长最大的不同在哪里?

4、课本里介绍了几种度量圆的周长的方法?

围绳法 滚动法

5、动画演示滚动法

6、哪个圆大?哪个圆的周长大?圆的大小由什么决定圆周长

的大小与什么有关系?

7、猜想、判断。周长与直径比哪个长?周长是直径几倍?

8、动手操作验证猜想

其实,很早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数。我们把它叫做圆周率,用字母π 表示。

π是一个无限不循环小数。

π=3.141592653……

在实际应用中常常只取它保留两位小数的近似值,π≈3.14。

9、投影展示π的前900位,体会π的小数数位的庞大。

10、圆周率前6位谐音记忆

π=3.14159…… 山 巅一寺一壶酒 巅 diān

11、得出结论:圆的周长是它的直径的π倍。写成等式是:c=πd

c=2πr。

12、对比 : c=4 a c=πd

(三)知识应用。求下面圆的周长

(四)课堂作业。《课本》P65 练习十四 1题、2题

圆的周长教案 篇2

教学目标

1.使学生认识圆的周长,初步理解圆周率的意义。

2.通过对圆周率值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。

3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

教学重点和难点

推导圆周长的计算公式。理解圆周率的意义。

教学过程设计

(一)复习准备

上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?

(二)学习新课

我们这节课就来研究圆的周长。(板书:圆的周长)

我想问问同学,你们都带了哪些圆形实物?

两人互相指指圆的周长在哪儿?

谁愿意到前面来指一指老师手里这个圆的周长。

谁跟他指得不一佯?为什么这样指不行?

老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?

老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?

哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。

请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。

(学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)

请小组代表汇报本组的实验过程和实验结果。

同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)

(师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。

看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。

想一想,以前我们学过哪些几何图形的周长?

长方形的周长和谁有关系?有什么关系?

正方形的周长和谁有关系?有什么关系?

圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。

(用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)

我们得出了圆的周长和直径有关系。

(板书:圆的周长 直径)

这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?

(学生分小组讨论。)

通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)

是不是这样呢?我们来验证一下。

(电脑演示:圆的周长是直径的3倍多一些。)

这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)

谁能说说圆周率是怎么得来的?

请同学们看书上是怎么说的?

早在20xx年前,我国古代数学经典《周髀算经》就指出:圆经一而周三,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。

(出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)

……此处隐藏2290个字……一周,可以得到圆的周长)

7、小结:那刚才我们同学不论是用尺子去量,还是把圆放在尺子上滚动,你最后得到的都是什么长度?(周长)这是一条什么呢?(直线)最后得到的都是一条直线。但是我们一开始我们研究了圆的周长实际上是一条什么的长?(曲线)说明我们可以把一条曲线化成一条直的线段来测量圆的周长(板书:化曲为直)在数学里,我们把这种思想称为化曲为直。

8、那是不是所有的圆,都能用我们刚才的方法来测量周长,想一想。

(生;非常大的和非常小的都不可以)

9、老师手中有一个绳,绳的一端有一个小球,当我挥动这个绳的时候,你想这个小球的运动轨迹会是一个什么图形?(圆)

其实,我们大家都做过这个实验是不是?看好了!(转动小球)

10、那我想问大家,刚才在空中旋转的这个圆,能通过刚才我们的方法来测量它的周长吗?(不能)

三、探究周长与直径的关系

1、那看来我们刚才找到的这些方法都有一定的局限。看来,我们也需要像研究长方形、正方形的周长一样,来找到一种做为普遍的一种公式,能够直接计算圆的周长

2、那现在请大家想一个问题,圆的周长到底和什么有关系?(半径、直径)

有说半径,有说直径,能说说你的理由吗?(指名说一说)

同学们都觉得和半径或直径有关系。

3、课件:请同学们认真的看大屏

这是一个圆,闪动的是圆的直径。仔细看(展开)这条线段是谁?(周长)

对,是这个直径是1分米的圆的周长。

再看(展开直径是0.8、0.6分米圆的周长)

4、通过刚才这3幅图,你发现什么了?(直径越长,他的周长就越长)

那看来确实直径可以决定圆的周长,是这样吗?

5、那现在请同学们继续我们刚才的测量,刚才我们只得到了圆的周长,对吗?现在就需要你再测量出手中这个圆的直径,那么你想找周长和直径之间的什么关系呢?(倍数)

6、为什么找倍数关系?(因为正方形的周长是边长的4倍)

你们同意吗?那咱们现在就按照同学所说的来继续刚才的活动,好吗?当你用周长除以直径时,一定要把结果除不尽的保留两位小数。

(这个小组非常好,有人测量,有人记录,有人计算,分工明确)

填完之后,互相说一说你发现了什么。

7、展示一个小组的数据

1)其他组也计算出来了是吧,我们不再往黑板上写了。

2)有没有算出来和黑板上不一样的?

3)是我们算错了吗?正方形的周长是边长的四倍,可以得到一个整数的结果。(结果有误差)

四、圆周率

1、那你们讨论出周长和直径的关系了吗?(3倍多一些)

2、那是不是所有的圆的周长都是圆的直径的3倍多呢?(看课件)

这是我们刚才得到的3个直径不同的圆的周长,那我们看一看他们之间是不是也有刚才我们同学所说的这种关系

3、怎么样?看来我们同学们得到的结论是正确的。确实,每个圆的周长都是它直径的3倍多一些。(板书)

4、那这3倍多一些说明什么?(圆的周长和直径之间确实有倍数关系)

5、我们说这3倍多一些就是固定不变的数,我们把它叫做圆周率,用字母 来表示

6、老师这里有一个关于圆周率的资料,请大家仔细的看,认真的听。

通过刚才的资料你有什么收获?( 取3.14、无限不循环小数)

7、师:刘徽:也是研究出了圆周率的关系

祖冲之:这是祖冲之,你们知道吗,1967年国际天文学家联合会把月球上的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之星”你们知道为什么吗?

8、板书:圆周率用希腊字母 来表示,一般保留两位小数(3.14)

那现在谁知道怎么计算圆的周长?能得出什么样的公式?

字母公式:C=d

知道半径怎么求周长?C=2r

小结:这两个公式都可以计算出圆的周长,那现在咱们要做一些有关的练习,你们愿意做吗?

圆的周长教案 篇5

教学目标:

1、通过教学使学生学会根据圆的周长求圆的直径、半径。

2、培养学生逻辑推理能力。

3、初步掌握变换和转化的方法。

教学重点:

求圆的直径和半径。

教学难点:

灵活运用公式求圆的直径和半径。

教学时间:

一课时

教学过程:

一、复习。

1、口答。

4π 2π 5π 10π 8π

2、求出下面各圆的周长。

《圆的周长(2)》教学设计《圆的周长(2)》教学设计《圆的周长(2)》教学设计 C=πd c=2πr

《圆的周长(2)》教学设计 3.14×2 2×3.14×4

=6.28(厘米) =8×3.14

=25.12(厘米)

二、新课。

1、提出研究的问题。

(1)你知道表示什么吗?

(2)下面公式的每个字母各表示什么?这两个公式又表示什么?

C=πd C=2πr

(3)根据上两个公式,你能知道:

直径=周长÷圆周率 半径=周长÷(圆周率×2)

2、学习练习十四第2题。

(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)

已知:c=3.77 求:d=?

(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)

三、巩固练习。

1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?

《圆的周长(2)》教学设计2、求下面半圆的周长,选择正确的算式。

⑴ 3.14×8

⑵ 3.14×8×2

⑶ 3.14×8÷2+8

3、一只挂钟分针长20c,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?

(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的《圆的周长(2)》教学设计,也就是走了整个圆的《圆的周长(2)》教学设计。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)

(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的《圆的周长(2)》教学设计,也就是走了整个圆的《圆的周长(2)》教学设计。则:钟面一圈的周长是多少? 20×2×3.14=125.6(厘米)

45分钟走了多少厘米? 125.6×《圆的周长(2)》教学设计=94.2(厘米)

4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?

作业。

P65-66 第3、6、7、9题

《关于圆的周长教案模板汇编五篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式