《比例的意义》教案

时间:2024-07-15 23:56:22
《比例的意义》教案15篇

《比例的意义》教案15篇

在教学工作者开展教学活动前,总不可避免地需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么优秀的教案是什么样的呢?下面是小编精心整理的《比例的意义》教案,欢迎大家分享。

《比例的意义》教案1

教学要求:

1.使学生认识正比例关系的意义,理解、掌握成正比例量的变化规律及其特征,能依据判断两种相关联的量成不成正比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学重点:认识正比例关系的意义。

教学难点:掌握成正比例量的变化规律及其特征。

教学过程:

一、复习铺垫

1.说出下列每组数量之间的关系。

(1)速度 时间 路程

(2)单价 数量 总价

(3)工作效率 工作时间 工作总量

2.引入新课。

上面是已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系。当其中有一个量变化时,另一个量也随着变化,而且这种变化是有规律的,这节课开始,我们就来研究和认识这种变化规律。今天,先认识正比例关系的意义。(板书课题)

二、教学新课

1.教学例1。

出示例l。让学生计算,在课本上填表,并思考能发现什么。指名口答,老师板书填表。让 学 生观察表里两种量变化的数据,思考:

(1)表里有哪两种数量,这两种数量是怎样变化?

(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

引导学生进行讨论,得出:

(1)表里的两种量是所行时间和所行路程。路程和时间是两种相关联的量,(板书:两种相关联的量)路程随着时间的变化而变化。

(2)时间扩大,路程也扩大;时间缩小,路程也缩小。

(3)可以看出它们的变化规律是:路程和时间比的比值总是一定的。(板书:路程和时间比的比值一定)因为路程和时间对应数值比的比值都是50。提问:这里比值50是什么数量?(谁能说出它的数量关系式?想一想,这个式子表示的是什么意思?(把上面板书补充成:速度一定时,路程和时间比的比值一定)

2.教学例2。

出示例2和思考题。要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。学生观察思考后,指名回答。然后再提问:这两种相关联量的变化规律是什么?枝数比的比值一定)你是怎样发现的?比值1.6是什么数量,你能用数量关系式表示出来吗?谁来说说这个式子表示的意思?(把板书补充成c单价一定时,总价和枝数比的比值一定)

3.概括。

(1)综合例1、例2的共同点。

提问:请大家比较例l和例2,你发现这两个例题有什么共同的地方?(①都有两种相关联的量;②都是一种量随着另一种量变化;③两种量里对应数值的比的比值一定)

(2)概括正比例关系的意义。

像例l、例2里这样的两种相关联的量是怎样的关系呢,请同学们看课本第40页最后一节。说明:根据刚才学习例1、例2时发现的规律,这里有两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。追问;两种相关联量成不成正比例的关键是什么?(比值是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的比值,那么上面这种数量关系式可以怎样写呢? 指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的比值k是一定的。这时就说x和y成正比例关系。所以,两个量成正比例关系,我们就用式子 =k (一定)来表示。

4.具体认识。

(1)提问:例l里有哪两种相关联的量?这两种量成正比例关系吗,为什么?例2里的两种量是不是成正比例的量?为什么?提问:看两种相关联的量是不是成正比例,关键要看什么?

(2)做练习八第1题。

让学生读题思考。指名依次口答题里的问题。指出:根据上面所说的,要知道两个量是不是成正比例关系,只要先看两种量是不是相关联的量,再看两种量变化时比值是不是一定。如果两种相关联的量变化时比值一定,它们就是成正比例的量,相互之间成正比例关系。

5.教学例3。

出示例3,让学生思考。提问:怎样判断是不是成正比例?哪位同学说说零件总数和时间成不成正比例?为什么?请同学们看一看例3,书上怎样判断的,我们说得对不对。追问:判断两种量是不是成正比例要怎样想?强调:关键是列出关系式,看是不是比值一定。

三、巩固练习

现在,我们根据上面的判断方法来做一些题。

1.做“练一练”第l题。

指名学生口答,说明理由。可以结合写出数量关系式。

2.做“练一练”第2题。

指名口答,并要求说明理由。

3.做练习八第2题。

小黑板出示。让学生把成正比例关系的先勾出来。指名口答,选择几题让学生说一说怎样想的?(必要时写出关系式让学生判断)

4.下列题里有哪两种相关联的量?这两种量成不成正比例?为什么?

一种苹果,买5千克要10元。照这样计算,买15千克要30元。

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示y和x这两种相关联的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

五、家庭作业

练习八第3题。

《比例的意义》教案2

教学目标

(一)知识教学点

感受并理解比例尺的意义,会计算图上距离和实际距离,并能解决相关的实际问题。

(二)能力训练点

①培养学生发现问题、分析问题、解决问题能力;

②在实际应用中感受数学、亲近数学,培养学生学习数学的兴趣;

③辩证唯物主义的初步渗透

教学重点 比例尺的应用。

教学难点 比例尺的实际意义。

教学过程

一、设置教学情境,感受比例尺

(一)画画比比

1、 估计黑板的长和宽:教室前的这块黑板同学们熟悉吗?

请你估计一下黑板的长和宽。

2、 丈量黑板的长和宽:(板书:黑板实际长3.5米,宽1.5米)

3、 画黑板:你能照样子把黑板画在本子上吗?(师巡视)

4、 质疑:这么大的黑板,为什么能画在这么小的一张纸上呢?(长和宽按一定的比例缩小了。)

[评析:照样子画黑板是同学们美术课上再熟悉 ……此处隐藏20411个字……(速度)保持一定,所以路程和时间是成正比例的量。

(7)想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?

(8)教师提出:如果字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

(9)教师提出:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

5.教学例3

(1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

(2)根据正比例的意义,由学生讨论解答。

(3)汇报判断结果,并说明判断的根据。

教师板书:

面粉的总重量和袋数是两种相关联的量。

所以面粉的总重量和袋数成正比例。

6.反馈练习

让学生试做第21页的做一做,并订正。

三、巩固发展

1.完成练习三第1题。

先想一想成正比例的量要满足哪几个条件?再算出各表相对应数的比的比值。如果相等,列关系式判断。第(3)题不成比例,订正时要学生说明为什么?

2.完成练习三第2题的(1)-(9)

先让学生自己判断,再订正。

四、全课小结(师生共同进行)

通过这节课的学习,你都知道了什么?怎样判断两种量是否成正比例?

《比例的意义》教案15

教学目标:

(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

(2)认识比例的各部分名称。

(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

教学重点难点:

理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

教具学具准备:

幻灯片、学习卡。

教学过程:

一、创设情景,引入新课。

出示三幅场景图。

(1)图上描述的是什么情景?这几幅图都与什么有关?

(2)这三面国旗有什么相同和不同的地方?(形状相同,大小不同)

(3)你们有见过这样的国旗吗?或者这样的?

我们的国旗,不论大小,之所以形状相同,是因为它们都是按照一定的比例来制作的,从今天开始,我们将要学习有关比例的知识。板书课题

二、自主探究,明确意义

1、提问:你们知道每一幅图中国旗的长和宽分别是多少吗?

2、谈话:在制作国旗的过程中存在着有趣的比。请同学们拿出第一张自主学习卡,算一算这三幅国旗的长、宽之比,求出比值,并同桌互相说一说你有什么发现?

3、学生汇报。

4、我们以操场上和教室里的国旗为例,2.4:1.6= ,60:40= ,这两个比的比值相等,中间可以用等号连接起来,写成2.4:1.6=60:40,因为比还可以写成分数形式,所以还可以写成=。

像这样表示两个比相等的式子叫做比例。(板书)

5、在上图的三面国旗的尺寸中,还有哪些比可以组成比例?

6、深入探讨:

(1)比例有几个比组成?

(2)是不是任意两个比都能组成比例?

(3)判断两个比能不能组成比例,关键要看什么?

7、完成“做一做”。

三、探究比例的基本性质。

1、学习比例各部分的名称。

教师:我们知道组成比的两个数分别叫前项和后项,组成比例的四个数也有自己的名字,你们知道它们分别叫什么吗?(课件出示)

(1)指名读一读有关知识。

(2)谁来介绍一下在2.4:1.6=60:40中,内项和外项分别是谁?

随着学生的回答教师出示:

2.4: 1.6 = 60: 40 (外项)(内项)

└-内项-┘ =

└------外项-------┘ (内项)(外项)

(3)如果把比例写成分数形式,你能找出它的内项和外项吗?

(4)任意选择一个比例式,标出内项、外项,同桌两人互相检查。

2、研究比例的基本性质。

(1)活动探究,总结性质。

谈话:比有基本性质,比例表示两个比相等的式子,也有它特有的性质,请同学们拿出2号自主学习卡,小组讨论一下,写一写,算一算,解决以下问题。

①计算下面比例中两个外项的积和两个内项的积,比较一下,你能发现什么?

2.4:1.6=60:40 =

②你能举一个例子,验证你的发现吗?

③你能得出什么结论?

④你能用字母表示这个性质吗?

(2)运用性质。

①提问:学了比例的基本性质,你觉得运用它能解决什么问题?

②运用比例的基本性质,判断下面哪组中的两个比可以组成比例。

(1) 6:3和8:5 (2) 0.2:2.5 和 4:50

(3) :和 : (4) 1.2: 和 :5

四、巩固练习。

1、填空

(1)在a:7=9:b中,( )是内项,( )是外项,a×b=( )。

(2)一个比例的两个内项分别是3和8,则两个外项的积是( ),两个外项可能是( )和( )。

(3)在一个比例里,两个外项互为倒数,那么两个内项的积是( ),如果一个外项是 ,另一个外项是( )。

(4)在比例里,两个内项的积是18,其中一个外项是2,另一个外项是( )。

(5)如果5a=3b,那么, = , = 。

2、判断。

(1)在比例中,两个外项的积减去两个内项的积,差是0。( )

(2)18:30和3:5可以组成比例。( )

(3)如果4X=3Y,(X和Y均不为0),那么4:X=3:Y。( )

(4)因为3×10=5×6,所以3:5=10:6。( )

3、把下面的等式改写成比例:(能写几个写几个)

16 × 3 = 4 × 12

四、总结归纳

1、这节课我们学习了什么知识?你有什么收获?

2、判断两个比能不能组成比例,有几种方法?

比例在生活中有着广泛的应用,比如:警察可以根据脚印的长短判断罪犯的大致身高,根据影子的长度可以算出一棵大树的高度等,都与比例有关,我们只要认真学好比例,就一定能帮助我们了解其中的奥秘。

板书设计

比例的意义和基本性质

表示两个比相等的式子叫做比例。

2.4: 1.6 = 60: 40 (外项)(内项)

└-内项-┘ 或 =

└------外项-------┘ (外项)(内项)

在比例里,两个外项的积等于两个内项的积。

A:B=C → AD=BC

《《比例的意义》教案15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式